
The IKController script is a versatile framework for inverse kinematics (IK) and can be customized
for various applications. Depending on your needs, you might want to adjust several properties or
change the optimization function. Here’s how you can do so:

Unity's Inspector is a powerful tool to tweak properties in real-time. By making variables into
[SerializeField] , even if they are private, you can expose them in the Unity Editor. This makes it
easier to adjust values during runtime and tune your IK without having to modify the script directly.

For example, if you want to expose the LearningRate variable, simply modify its declaration:

Now, LearningRate will appear in the Unity Inspector, allowing you to modify its value through the
Unity Editor interface.

Each joint (ArmJoint) is a critical component in the IK system. You might need to adjust the
following properties for different robots or characters:

Rotation Axis: Determines which axis (x, y, z) the joint will rotate around.
Min/Max Angle: Constraints on how much the joint can rotate. This is essential to ensure
that the joint doesn't rotate beyond its physical or desired limits.
StartOffset: The starting position offset of the joint relative to its parent.

You can add these as serialized fields if you want to tweak them in the Unity Editor directly.

The current error function in the IKController script primarily focuses on the distance and angle to
the target. However, in many real-world scenarios, other factors might be crucial.

Customizing the IKController
for Different Applications

Serialized Fields for Editor Exposure:

[SerializeField] private const float LearningRate = 50f;

Tweaking Joint Properties:

Enhancing the Error Function:

Collisions between robot joints or between a robot and external objects can be problematic. You
can enhance the error function to penalize configurations where joints overlap or come too close to
other objects. To do this, integrate a collision checker that returns a high penalty value if a collision
is detected.

For example:

For robots where energy efficiency is crucial, you might want to add a term that penalizes
configurations requiring more energy. This could be based on joint angles, rotation speed, or other
robot-specific parameters.

The provided script uses gradient descent, which might not be optimal for all scenarios. Depending
on your robot's complexity and the required precision, you might want to explore other
optimization techniques or even machine learning-based approaches to find the best configuration.

Depending on the robot's design, there might be specific postures or configurations that are
undesirable or impossible. By adding custom constraints to the optimization process, you can
ensure that the IK solution respects these constraints.

Remember, the IKController is a starting point. Depending on the complexity of your application,
robot design, and requirements, you might need to expand and customize it further. Always test
your changes in a controlled environment to ensure that the robot behaves as expected.

Collision Handling:

if (JointCollisionDetected(i))

{

 penalty += HighCollisionPenaltyValue;

}

Energy Consumption or Efficiency:

4. Changing Optimization Techniques:

Introducing New Constraints:

Revision #2
Created 4 September 2023 12:54:57 by Matilda Fogato
Updated 18 October 2023 09:30:57 by Matilda Fogato

