
Unity - basic setup

Getting started with Unity and VR
Setting the scene
Basic Teleportation
Customizing controls
UI events
Finishing touches

3DTiles

Pointclouds
Reprojection, Compression & Merging

Unity with optional VR controls

Initializing non-VR player character
Switching from VR to non-VR mode in the Editor
Switching from VR to non-VR mode at runtime

Unity - inverse kinematics for robot arms

Inverse Kinematics Scripts
Pick-and-place and IK Controller
Customizing the IKController for Different Applications

Unity and Arduino - MQTT connection

Software
Documentation

MQTT-Arduino-and-Unity

Unity - API Interface

Server Integration Basics

Unity - MQTT interface

MQTT - Unity interface

Tutorial for setting up Unity for VR using the XR Interaction Toolkit.

Unity - basic setup

Unity - basic setup

Before you get started, make sure that your VR headset and controllers are properly connected to
your workstation. For additional tips on how to get started with the HTC Vive headset, consult the
[hardware guide].

In the SteamVR settings, make sure that the Current OpenXR Runtime is set to SteamVR instead
of Oculus, especially if a VR headset other than the HTC Vive was used on your current computer.

Create a new Unity project using the latest official version. It is beneficial at this stage to check for
an updated version, but the rest of this guide will assume you're working with version 2021.3.19f1 .
Select the Universal Render Pipeline as the project type. This format provides the highest
graphics fidelity.

Create a new empty scene in your project. Go to Window>Package Manager, choose
Packages:Unity Registry from the drop-down menu, then search for XR Interaction Toolkit and
install the package. The version used in this guide is 2.2.0 . From the samples in the XR Interaction
Toolkit, import the Starter Assets. Install the XR Plugin Manager as well.

Getting started with Unity
and VR

Navigate to Edit>Project Settings>Preset Manager. In the Project file explorer, navigate to Assets >
Samples > XR Interaction Toolkit > 2.2.0 > Starter Assets, open a preset in the inspector, then
click Add to ScriptName Default. You should see the preset appear in the preset manager. Repeat
this step for all the other presets available in the Starter Assets folder. Make sure that you label the
presets for the Left and Right controllers using the filter. If everything is set up correctly, this is
what you should see in the Preset Manager:

Navigate to XR Plug-in Management from the Project Settings. Under Plug-in Providers, check the
Open XR box, and wait for the scripts to reload. An Open XR tab should appear under Plug-in
Management, where you should add the HTC Vive controller profile to the list of interaction profiles.
In the OpenXR tab, also make sure that the Play Mode OpenXR Runtime is set to SteamVR.

You' re now ready to start building your VR scene in Unity!

https://docs.dtlab.eaisi.tue.nl/uploads/images/gallery/2023-03/preset-manager-settings.png

Unity - basic setup

Now that all the project settings have been updated to work with our VR setup, it's time to build our
VR scene. First, create a plane game object at coordinates 0,0,0 to serve as the floor. Then, create
an XR Origin (VR) object. This object contains a camera offset, which defines the height of the
camera corresponding to the headset in space, the main camera object, and the two controllers. If
you run the game now, you' ll notice that your head movements are tracked, but you cannot see
the controllers. That's because we haven' t assigned them an asset yet!

To fix that, you can import the vr_controller_vive_1_5 asset from the VR Starter Template, simply
by dragging and dropping the asset from the asset folder to the controller objects. Rotate the
assets (not the parent controllers!) by 180 degrees around the Y-axis to make sure that they' re
matching their real-world orientation. To make the controllers appear more realistic, we can create
a new material and set the Base Map to black or dark gray. Then, we drag this new material onto
the lowest-level controller objects, which should be called whole_model_group1.

For each controller, you will also need to add the input handling preset. To do so, click on the slider
icon in the top-right corner of the XR Controller (Action-based) dropdown, and select the XRI
Default Left/Right Controller preset, depending on which controller you've selected.

Each controller should have an XR ray interactor, which allows us to use the controller buttons to
interact with game objects and UI components. To test this, add a Sphere or Cube game object to
the scene, and assign it a Rigidbody and an XR Grab Interactable component. When running the
game, you should be able to grab the object by using the controller's trigger.

Setting the scene

Unity - basic setup

Teleportation allows you to instantly move from a location to another in your VR environment. To
get a teleportation system up and running, you first need to add a Locomotion System and a
Teleportation Provider to your XR Origin object. Make sure that the XR Origin is assigned to the
Locomotion System, and that the Locomotion System is assigned to the Teleportation Provider

From the Unity main menu, click GameObject > XR > Teleportation Area or GameObject > XR >
Teleportation Anchor to create a plane on which teleportation is possible. On a Teleportation Area,
you teleport to your pointed target on the plane's child collider, whereas a Teleportation Anchor
specifies a pre-determined position and/or rotation in addition to the Teleportation Area. You can
also add a Teleportation Area component to the Plane object we've previously set up as our floor.

You should now have a basic scene with the ability to teleport using your controllers. By default,
teleportation is activated by the grip buttons on the HTC Vive controllers. The default ray
interactors will turn from red to white if you're pointing at an area where you can teleport.

Basic Teleportation

Unity - basic setup

In order to make your game or simulation more intuitive or accessible, you can modify the
controller bindings inside your Unity project. Here, we will show how to change the teleportation
controls from the default grip buttons to the trigger.

From the Assets folder, click on Samples > Interaction Toolkit > 2.2.0 > Starter Assets, then
open the XRI Default Input Actions Import Settings. Select the XRI LeftHand Interaction menu, in
the drop-down properties of Select you should see gripPressed [LeftHand XR Controller]. Change
that path to triggerPressed [LeftHand XR Controller]. Repeat this step for Select Value, changing
the path from grip [LeftHand XR Controller] to trigger [LeftHand XR Controller].
To avoid having two actions mapped to the same button input, you can also change Activate to
gripPressed, and Activate Value to grip.

Go back to your LeftHand Controller in your scene, and under the XR Ray Interactor properties,
check the box "allow Hovered activate". This way, you won't have to grip the controller to activate
objects you're pointing at.

For the right controller, you can keep the default input actions. To make the right controller only
interact with UI elements, the XR Ray Interactor can be modified. Change the Raycast Mask from
Everything/Default to UI, and the right ray will only be able to interact with UI elements. This can
be useful if you want to avoid accidental teleportation when pressing a UI button, for example.

Customizing controls

Unity - basic setup

To interact with Unity's built-in UI elements, you need to perform extra steps, particularly if you're
dealing with 3D-tracked devices. The XR Interaction Toolkit package provides a number of new
components that you can use to convert an XR controller to work seamlessly with the UI, as well as
helper menu options that handle basic configuration settings.

Before adding a button, a slider, or any other UI element, click on GameObject > UI > Canvas to
generate a Canvas which will contain all UI elements, as well as an EventSystem component. In the
Canvas properties, change the Render Mode to World Space, and set the Event Camera to the
Main Camera. Then, use the Scale property to make the Canvas fit your scene.

The Event System component acts as a central dispatch for UI events to process input, and update
individual active canvases. Additionally, each Event System needs an Input Module to process
input. The EventSystem component might have a Standalone Input Module or an Input System UI
Module, which will prevent proper input processing. Remove the component, and add an XR UI
Input Module to the event system.

Finally, add a Tracked Device Graphic Raycaster component to the Canvas, and set the Raycast
Trigger Interaction to "Collide". This will allow your Raycast to actually hit elements on the Canvas
instead of passing through them.

To test your setup, add a Button object as a child of the Canvas. If you select the button by
pressing the trigger on your Right controller, the button should change color. Now, you can add
your own script to the Button object, and change the On Click () property to run that script when
the button is pressed.

UI events

Important: If you directly modify the Width and Height of your Canvas instead
of scaling it, the Canvas might not work as intended. This also applies to Buttons
and other UI elements.

Unity - basic setup

Now that all the basic elements are in place, you can add some features to the scene to make it
more user-friendly.

First of all, change the color of the left and right controller object to easily tell them apart. To do
this, click on the whole_model_group1 object, then on Material > Surface Inputs. Change the Base
Map to a different color for each controller. In the Demo Project, you can see that the left controller
is blue, and the right controller is red.

Now you can improve the looks of teleportation and raycasting. In the XR Ray Interactor properties,
under Raycast Configuration, change the Line Type to Projectile Curve. You can also change the ray
color: in the template, the Invalid Color Gradient is set to transparent. This makes the ray invisible,
until it is pointed at a valid target.

A teleportation reticle can also be added to the ray. To prototype this, create a new cylinder,
rename it Teleport Reticle, remove the collider, scale it down to 0.5 and lower the Y axis to create a
disk shape. Create a new material called Reticle Base, set the shader to URP/unlit, set the surface
type to transparent, choose a color, and decrease the alpha value to about 70. Drag the new
material onto the Teleport Reticle object and assign the Reticle to the Reticle property of the Line
Visual component. You can see a transparent reticle at the end of our ray which appears when
hovering over an eligible object and provides some additional feedback to the player on their
teleport location.

To make this element more interesting, you can use a ShaderGraph instead of a solid color. Right
click in the Project folder and select Create > Shader Graph > URP > Unlit Shader Graph, then
open the new shader in the shader editor. In the Graph Inspector, change the Surface Type to
Transparent and the Render Face to Both. Now let's create two colors in the left-hand panel for the
shader effect. Switch the Graph Inspector to the Node Settings window to view the properties for
each color. Make the TopColor fully transparent, and the BottomColor your preferred shade. To
create a gradient based on the height of the model, right click in the open space and select Create
Node then search for Position. Update the Space value to Object. Create another node for Split.
Connect the nodes by dragging the node marker from the output of Space to the input of Split.
Create a Lerp node, then connect BottomColor to A, TopColor to B, and the output of Split to T.
Next drag the Lerp Output to the “Base Color” Fragment. Create a new Split node and drag in the
Lerp output, then drag the alpha channel from the split to the alpha on the Fragment. This will
allow you to separately control the alpha values. The Shader setup is now complete. Click on Save
Asset and return to the Scene. Right click on the Shader and select Create -> Material. This will
create a new material with the shader already applied to it. Next apply the material to our
teleportation reticle cylinder. Once applied, choose some colors and play around with the alpha
channel.

Finishing touches

3DTiles

3DTiles

To convert pointclouds to 3dtiles format you can use this tool. It supports converting from las/laz,
xyz, ply and wkb formats. This guide focuses primarily on the conversion from las/laz formats.

To install the tool execute the following commands to clone the project and install it with support
for laz files. There are additional system dependencies that might have to be installed, which can
be found here.

To convert las/laz files to 3dtiles you can then use the following command with the python
environment activated:

You can optionally convert the CRS of the input to another one. Note that for the DTLab
architecture a single unified CRS is needed for all files, so make sure to convert the input to
EPSG:4326 if it is in another using the options --srs-in SRS_IN --srs_out 4326 , specifying the input
SRS of the las/laz files.

Pointclouds

$ git clone https://gitlab.com/Oslandia/py3dtiles.git

$ cd py3dtiles

$ python -m venv .venv

$ source .venv/bin/activate

$ pip install -e .

$ pip install laspy[laszip]

$ py3dtiles convert input1.laz input2.laz --out output_dir

https://gitlab.com/Oslandia/py3dtiles
https://oslandia.gitlab.io/py3dtiles/master/install.html#supporting-laz-files

3DTiles

To reproject a 3d tileset to another CRS you can use the py3dtilers tool.

To compress a 3d tileset using draco you can use 3d-tiles-tools.

To merge multiple 3d tilesets together you can use 3d-tiles-tools.

Reprojection, Compression &
Merging
Reprojection

Compression

Merging

https://github.com/VCityTeam/py3dtilers/tree/master
https://github.com/CesiumGS/3d-tiles-tools
https://github.com/CesiumGS/3d-tiles-tools

Unity with optional VR
controls

Unity with optional VR controls

In this tutorial, we will assume that your Unity project has already been set up for VR use with the
XR Interaction Toolkit, as well as the Input System. To initialize a non-VR player character in an
existing VR project in Unity, follow these steps:

1. Create a new GameObject: In the Unity Editor, right-click in the Hierarchy panel and select
"Create Empty." This will create a new empty GameObject. Name this object "Player".

2. Attach the VR Mode Switcher script to the "Player" GameoObject. This script will allow you
to enable/disable the VR Mode at runtime.

3. Create a child GameObject: right-click on the Player GameObject in the Hierarchy panel
and select "Create Empty". Name this object "Player Controller".

4. Attach a Rigidbody: Select the "Player Controller" GameObject, then click on the "Add
Component" button in the Inspector panel. Search for "Rigidbody" and add it to the
GameObject. Set the "Interpolate" property to "None". The Rigidbody controller will handle
physics for your player object.

5. Attach a character controller: Select the "Player Controller" GameObject, then click on the
"Add Component" button in the Inspector panel. Search for "Character Controller" and add
it to the GameObject. The Character Controller component will handle the player's
movement and collision.

6. Add a 3D model or sprite: If you want a visual representation for your player character,
you can add a 3D model or sprite. Import your desired model or sprite into Unity by
dragging it into the Project panel. Then, drag and drop the model or sprite onto your
Player GameObject in the Scene view or Hierarchy panel.

Initializing non-VR player
character

Be careful with Mesh Colliders!
GameObjects that have a Rigidbody component only support Mesh Colliders that
have Convex option enabled: the physics engine can only simulate convex mesh
colliders.

7. Set up player controls: Attach a Player Input object and the Input System Test to the
Player Controller. Open the "Events" drop-down menu, and add the corresponding
function from Input System Test to each Event included in the Input Action Asset. Some
example functions for things such as camera movement, player movement, and jumping
are already included in the Input System Test script.

8. Add a raycast for UI interaction: To enable the player character to interact with UI
elements such as buttons or menus, you'll need to add a raycast. Attach the Raycaster
script to the player character GameObject. This script uses the Physics.Raycast method to
detect if the ray hits any UI elements and perform the desired actions accordingly, such as
button clicks or menu selections.

9. Test and refine: Save your script and go back to the Unity Editor. Disable the Xr Origin
object to make sure that the game won't start in VR mode. Press the Play button to enter
Play mode and test your player character initialization and movement. Make any
necessary adjustments to the code or settings until you are satisfied with the result.

That's it! By following these steps, you can initialize a player character in Unity and have them
ready for movement and interaction in your game.

Unity with optional VR controls

Here's how to change from a VR to a non-VR player view in the Unity editor:

1. Open your Unity project and make sure you have both the VR and non-VR player
controllers set up. These controllers should be separate GameObjects, each with scripts
and components attached to the player character.

2. In the Unity editor, locate the XR Origin. This GameObject is responsible for handling the
input and movement in the VR environment.

3. Disable the XR Origin. You can do this by right-clicking on the script/component in the
inspector and selecting "Disable" or "Remove". The XR Interaction Manager GameObject
can remain active

4. Locate the non-VR player controller component. This component is responsible for
handling the input and movement in the non-VR environment.

5. Enable the non-VR player controller component. If the component was already added but
disabled, right-click on it in the inspector and select "Enable". If the component wasn't
added yet, refer back to the previous tutorial on how to set up the non-VR player
controller.

6. Save your changes by pressing Ctrl + S (Windows) or Command + S (Mac) or by
navigating to File > Save Scene.

7. Enter Play mode by clicking the Play button at the top of the Unity editor or by pressing
Ctrl + P (Windows) or Command + P (Mac).

8. You should now be able to see the non-VR player view in the Game view window instead
of the VR view. You can use your regular input controls to interact with the game as a
non-VR player.

That's it! You have successfully changed from a VR to a non-VR player view in the Unity editor. You
can toggle between the two views by enabling/disabling the corresponding player controller scripts
or components.

Switching from VR to non-VR
mode in the Editor

Unity with optional VR controls

1. Make sure you have both the XR Origin and non-VR player controllers set up in your Unity
project. These controllers should be separate scripts or components attached to the
player character.

2. Attach the "VRModeSwitcher" script to an empty GameObject in your scene.
3. In the Unity editor, drag and drop the XR Origin GameObject and the non-VR player

controller GameObject into the appropriate fields of the "VRModeSwitcher" script
component.

4. Save the script and return to the Unity editor.
5. Enter Play mode by clicking the Play button at the top of the Unity editor or by pressing

Ctrl + P (Windows) or Command + P (Mac).
6. Press the (alphanumeric) 1 key to toggle between VR and non-VR modes at runtime. The

corresponding player controller should be enabled or disabled based on the selected
mode.

Switching from VR to non-VR
mode at runtime
Enabling and disabling VR through
keyboard input

Enabling and disabling VR through an in-
game button

Unity - inverse kinematics
for robot arms

Unity - inverse kinematics for robot arms

This set of scripts provides inverse kinematics solutions tailored for the UR10 robot arm,
complemented by a custom actuator. It's designed to facilitate the visualization of the robot
grasping and positioning boxes conveyed by a belt system.

Ensure your Unity project is initialized using the 3D URP (Universal Render Pipeline) template. This
script was developed and tested for Unity Editor version 2021.3.19f1 and as such, stability of this
script in future versions is not guaranteed. The scripts can be downloaded, along with a demo
project, can be downloaded from the DTLab GitLab page and then copied to the new Unity project.
The essential scripts for Inverse Kinematics, without the pick-and-place functionality, are:

IKController -> to control the robot arm's movement
DisableGravityForJoints -> to override the physics built into the URDF model
MoveAlongPath -> to move the box along the conveyor belt

For effective robot arm simulation and interaction, integrate the following packages:

ROS TCP Connector
Unity Robotics Visualizations
URDF Importer

All the above packages can be sourced and installed from Unity Robotics Hub on GitHub.
Alternatively, they can be imported from locally cloned repositories housing the packages.

Inverse Kinematics Scripts
Purpose

Prerequisites
Unity Setup:

Required Packages:

https://github.com/Unity-Technologies/Unity-Robotics-Hub

Using a URDF File: If your robot arm configuration is stored in a URDF file, navigate to the
asset within Unity. Right-click and choose "Import Robot from Selected URDF file". This
action will generate a 3D visual of the robot arm, incorporating the designated joints and
their inherent physical constraints.
Without a URDF File: If you possess only a 3D render of the robot, devoid of joint
articulation, consider importing this model into Blender. Within Blender, introduce "bones"
to your model. These bones will enable the various robot segments to exhibit mobility and
flexibility.

1. Script Integration: Begin by adding the IK script to your Unity project.
2. Setting up the IK Controller:

Create a new empty GameObject within your scene.
Rename this GameObject to IK Controller.
Attach the IK Controller script to this GameObject.

3. Configuration:
Assign the appropriate GameObjects to the Actuator and IK Target fields.
For scenarios requiring multiple targets, ensure you populate the Target Array with
the relevant GameObjects in the order they should be referenced.

4. Joints Array Setup:
Populate the Joints array with all individual joints from the robot arm.
Start with the base link (root of the arm) as Element 0 in the array.
Conclude the array with the actuator as the final element.

By following these steps, you will have successfully set up the IK Controller to interact with your
robot arm in Unity.

Robot Arm Integration:

Setup and Installation

Unity - inverse kinematics for robot arms

The IKController class provides an inverse kinematics solution for robotic arms in Unity. It allows
the robotic arm to adjust its joints to reach or point to a specific target position. This is achieved
through the gradient descent algorithm.

_targetGameObject: An array of GameObjects representing the targets the robotic arm
should move towards.
actuator: The GameObject representing the end effector of the robotic arm.
ikTarget: The GameObject representing the inverse kinematics target.
endPoints: An array of Transforms that indicate the end points of the robotic arm.
_targetTransform: An array of Transforms associated with the _targetGameObject .
Joints: An array representing the joints of the robotic arm. The joints determine the
rotation axis.
Angles: An array of floats representing the current angles of the robotic arm joints.
InverseKinematicController: A GameObject that serves as the controller for inverse
kinematics.
suctionCupTransform: Transform component of the actuator.
delayedIKTarget: An instance of DelayedIKTargetUpdate attached to the current
GameObject.
collisionPenalty: A penalty score added when joints come too close together to avoid
self-collision.
target: The target Vector3 position that the robotic arm should move towards.

Pick-and-place and IK
Controller
Overview:

Properties:

Constants:

SamplingDistance: The distance for sampling in the gradient descent algorithm.
LearningRate: The rate at which the angles are adjusted during the gradient descent.
DistanceThreshold: The threshold under which the arm is considered to have reached
the target in terms of distance.
AngleThreshold: The threshold under which the arm is considered to have reached the
target in terms of angle.

Initializes the _targetTransform array by fetching the Transform component of each target
GameObject. It also initializes the suctionCupTransform and sets the initial target for the robotic arm
based on the Dropped flag.

Starts the inverse kinematics movement after a delay. Not used in the demo implementation, but
can be used as an alternative to th distance-based default.

A coroutine that updates the target position to the position of the ikTarget and adjusts the angles
of the joints to move towards this new target.

Called once per frame. Adjusts the target position based on various conditions and executes the
inverse kinematics algorithm.

Given an array of joint angles, it computes the position of the end effector using forward
kinematics.

Calculates the distance between the target position and the end effector's position.

Calculates the angle between the target position and the end effector's position.

Methods:
Start()

StartMovementWithDelay()

InverseKinematicCoroutine()

Update()

ForwardKinematics(float[] angles)

DistanceFromTarget(Vector3 target, float[] angles)

AngleWithTarget(Vector3 target, float[] angles)

ErrorFunction(GameObject target, float[] angles)

Calculates the error between the end effector's position and rotation and the target's position and
rotation.

Computes the partial gradient of the error with respect to a specific joint angle.

The core method for the inverse kinematics solution. Adjusts the joint angles so that the end
effector moves closer to the target position.

The script adjusts the robotic arm's angles using the gradient descent algorithm to minimize the
error function. The error function encapsulates the distance between the end effector and the
target and potential penalties due to near-collisions between joints.

Ensure to have the required targets and joint GameObjects correctly set in the Unity Editor for this
script to work as intended.

PartialGradient(Vector3 target, float[] angles, int i)

InverseKinematics(Vector3 target, float[] angles)

Remarks:

Unity - inverse kinematics for robot arms

The IKController script is a versatile framework for inverse kinematics (IK) and can be customized
for various applications. Depending on your needs, you might want to adjust several properties or
change the optimization function. Here’s how you can do so:

Unity's Inspector is a powerful tool to tweak properties in real-time. By making variables into
[SerializeField] , even if they are private, you can expose them in the Unity Editor. This makes it
easier to adjust values during runtime and tune your IK without having to modify the script directly.

For example, if you want to expose the LearningRate variable, simply modify its declaration:

Now, LearningRate will appear in the Unity Inspector, allowing you to modify its value through the
Unity Editor interface.

Each joint (ArmJoint) is a critical component in the IK system. You might need to adjust the
following properties for different robots or characters:

Rotation Axis: Determines which axis (x, y, z) the joint will rotate around.
Min/Max Angle: Constraints on how much the joint can rotate. This is essential to ensure
that the joint doesn't rotate beyond its physical or desired limits.
StartOffset: The starting position offset of the joint relative to its parent.

You can add these as serialized fields if you want to tweak them in the Unity Editor directly.

Customizing the IKController
for Different Applications

Serialized Fields for Editor Exposure:

[SerializeField] private const float LearningRate = 50f;

Tweaking Joint Properties:

Enhancing the Error Function:

The current error function in the IKController script primarily focuses on the distance and angle to
the target. However, in many real-world scenarios, other factors might be crucial.

Collisions between robot joints or between a robot and external objects can be problematic. You
can enhance the error function to penalize configurations where joints overlap or come too close to
other objects. To do this, integrate a collision checker that returns a high penalty value if a collision
is detected.

For example:

For robots where energy efficiency is crucial, you might want to add a term that penalizes
configurations requiring more energy. This could be based on joint angles, rotation speed, or other
robot-specific parameters.

The provided script uses gradient descent, which might not be optimal for all scenarios. Depending
on your robot's complexity and the required precision, you might want to explore other
optimization techniques or even machine learning-based approaches to find the best configuration.

Depending on the robot's design, there might be specific postures or configurations that are
undesirable or impossible. By adding custom constraints to the optimization process, you can
ensure that the IK solution respects these constraints.

Remember, the IKController is a starting point. Depending on the complexity of your application,
robot design, and requirements, you might need to expand and customize it further. Always test
your changes in a controlled environment to ensure that the robot behaves as expected.

Collision Handling:

if (JointCollisionDetected(i))

{

 penalty += HighCollisionPenaltyValue;

}

Energy Consumption or Efficiency:

4. Changing Optimization Techniques:

Introducing New Constraints:

Description of how to connect Unity and an Arduino to an MQTT broker.

Unity and Arduino - MQTT
connection

Unity and Arduino - MQTT connection

LINK TO GITLAB REPOSITORY

Project description
Unity overview

Features
Unity project walktrough

Getting Started
MQTT example
Chart example

Arduino overview

This repository contains information on how to connect an Arduino to Unity via a MQTT broker. Both
the Arduino and the Unity project are able to Subscribe and Publish to multiple MQTT topics. It is
important to note that the provided code will need to be changed according to your project
specifications. Additionally, the Unity project also has graph visualisation using Xcharts.

This section provides comprehensive information on using the MQTT client in Unity, along with
instructions on how to display values on a graph within Unity. The MQTT client allows you to
subscribe to MQTT topics, receive and publish messages, and integrate them into your Unity
project.

MQTT-Arduino-and-Unity

Table of Contents

Project description

Unity overview

https://gitlab.tue.nl/dtlab/mqtt-arduino-and-unity/-/tree/main
https://gitlab.tue.nl/dtlab/mqtt-arduino-and-unity/-/tree/main
https://github.com/XCharts-Team/XCharts

The Unity project has 2 dependencies. These dependencies are already present within the project.
When using the prefabs from this project these dependencies automatically get imported into your
new project.

☐ MQTTnet 3.1.0 library; responsible for creating a MQTT client within Unity.
☐ Xcharts; responsible for the visualisation of the data with Unity.

As mentioned above, this repository also contains 2 prefabs that can be directly imported into your
own Unity project. These prefabs can than be adjusted to your own needs.

☐ MQTT; contains the MQTTSubscriber and MQTTPublisher script. The MQTTSubscriber
cannot be deleted from the prefab, as this contains the contains all relevant code that is
needed for a connection with the MQTT broker. The MQTTPublisher script is only there for
demonstation purposes (as will be shown below) and can be deleted from the prefab.
☐ ChartUpdater; This contains code that reads the data provided by the MQTT prefab and
publishes it to the chart. This is not neccesary for a MQTT connection, but is used here for
the demonstration.

MQTT subscription and publication within Unity.
Debugging options to view messages in the Unity console.
Support for MQTT brokers on specified TCP servers and ports.
Optional use of credentials and encryption.
Easy integration with Unity game objects and C# scripts.

This Unity MQTT client allows you to easily connect to MQTT brokers, subscribe to topics, and
publish messages. The MQTT publisher and subscriber can be attached to the same GameObject or
separated into two GameObjects, offering flexibility and customization based on your project's
requirements.

To set up the MQTT subscriber, follow these steps:

1. Attach the MQTT subscriber script to a GameObject in your Unity project.
2. Toggle the "Enable connection" option to establish a connection.

Features

Unity project walktrough

Getting Started
Configuring the MQTT subscriber

https://github.com/dotnet/MQTTnet
https://github.com/XCharts-Team/XCharts

3. Optionally, enable "Toggle Debugging" to print received and published messages to the
Unity console.

4. Configure the MQTT broker address (TCP server) and port according to your MQTT host
settings.

5. If necessary, provide credentials and enable encryption (e.g., for port 8883).
6. Specify the "Topic Path" as the common path to access the topics you want to subscribe

to.
7. Populate the "Topics" list with the variable names of the topics you wish to subscribe to.

The MQTT publisher settings are similar to those of the subscriber:

1. Attach the MQTT publisher script to a GameObject in your Unity project.
2. Drag and drop the MQTT subscriber script to MQTT subscriber field.
3. Specify the "Topic Path" as needed. This can be different from the subscriber's topic path.
4. Specify the "Topic" with the variable name of the topic you wish to publish to.
5. The "Data Reading Delay" is an example value that will be published to the MQTT broker

on startup. Change this as you please.

Let's consider an example where we connect to the public mosquitto server on port 1883, which
doesn't require credentials or encryption. We will subscribe to the topic "DTlab/Subscribe/Humidity"
and publish to "DTlab/Publish/DataInterval". See the iamge below for all settings. To begin, disable
the "ChartUpdater" object in the Unity hierarchy and enable debugging to verify the subscription
and publishing process.

MQTTsetupImage not found or type unknown

You can confirm successful publishing in Unity's console immediatly. To verify subscription, you can
use MQTT Explorer, a simplified MQTT client. Publish a value (e.g., 54) to the same topic you are
subscribed to ("DTlab/Subscribe/Humidity"). As shown in the console, Unity receives the message
correctly.

MQTTConsoleImage not found or type unknown

The MQTT Subscriber script automatically creates a dictionary for accessing received messages
from other Unity GameObjects and C# scripts. For an example, refer to the "ChartUpdater" object
and the "AddToChart" script.

We won't delve into full script details here, but let's briefly explain the functionality of the
"AddToChart" script.

Configuring the MQTT Publisher

MQTT example

Chart example

https://ibb.co/n649rW8
https://imgbb.com/

In this example, we use the same MQTT setup as before and configure the "AddToChart" script as
follows:

Chart-Updater-SettingsImage not found or type unknown

The "Humidity" line chart is a child of the canvas GameObject.
"Max Chart Size" indicates the number of data points the chart can display.
"Data Interval" is automatically obtained from the MQTT Publisher GameObject.
The "ChartUpdater" reads values from the MQTT topic list and adds them to the chart in
the specified order. This occurs at intervals defined by the "Data Interval" variable.

The result is a dynamic chart displaying MQTT data received within Unity. the example below
displays the received value 54 in teh chart every half a second.

Humidity-chartImage not found or type unknown

Arduino overview

https://imgbb.com/
https://imgbb.com/

A guide on interfacing with the DTLab API through the Unity Editor in order to retrieve models and
projects from the graphDB for use in Unity projects.

Unity - API Interface

Unity - API Interface

The Unity Server Integration package comprises three main components: LoginManager ,
LoginEditorWindow , and AuthTokenManager . Together, these scripts provide a solution for
authenticating Unity users, fetching data from a server, and managing authentication tokens within
the Unity Editor.

LoginManager: Responsible for interfacing directly with the server. It sends login
credentials, retrieves user data, models, and projects.
LoginEditorWindow: Provides a user-friendly GUI within the Unity Editor for users to
input their credentials, initiate server requests, and view fetched data.
AuthTokenManager: A utility class that centrally manages the authentication token,
ensuring secure storage and easy access for server requests.

1. User Authentication:
Users can input their username and password within the LoginEditorWindow .
Upon confirming, LoginManager sends the credentials to the server.
Successful authentication returns a token, stored using AuthTokenManager .

2. Fetching Data:
Once authenticated, users can fetch models, projects, and their user data via
buttons in the LoginEditorWindow .
The data retrieval is handled by LoginManager , which sends requests to the server
using the token from AuthTokenManager .
Fetched data is displayed within the LoginEditorWindow .

3. Token Management:
AuthTokenManager provides a centralized way to store and retrieve the authentication
token.
The token is essential for making authenticated requests to the server after the
initial login.

1. Open the LoginEditorWindow via Tools > Login Manager in the Unity Editor.

Server Integration Basics
Introduction

Key Functionalities

Workflow

2. Input your username and password , then click "Confirm".
3. Upon successful login, the authentication token is stored.
4. Use the "Fetch Models/Projects" and "Fetch User Data" buttons to retrieve data from the

server.
5. View the fetched data directly within the LoginEditorWindow .

Updated Unity - MQTT interface

Unity - MQTT interface

Unity - MQTT interface

LINK TO GITLAB REPOSITORY

[!WARNING] This documentation is set to be partialy merged with the API documentation for Unity.

[!WARNING] This package does not allow for certificate validation.

Project owner: Yann van Eijk
Unity version 2021.3.27f1

This repository contains the scripts needed within Unity to create an interface between MQTT and
Unity. Its main functionality is to receive and sent real-time messages from topics on the MQTT
Broker. These messages are processed within Unity as strings , for other types use TryParse .

The MQTT package is part of the 'DT lab Unity interface package'. For a full installation guide,
please refer to...

Establishing a connection to the MQTT broker is facilitated through the MQTT editor window,
accessible via Tools -> EAISI Digital Twin Lab -> MQTT editor . Upon opening, a new window will
appear next to the Inspector window.

MQTT - Unity interface

Project description

Installation

MQTT broker connections

https://gitlab.tue.nl/dtlab/unity-client-dtlab-api
https://docs.dtlab.eaisi.tue.nl/books/software-documentation/page/server-integration-basics
mailto:j.h.m.v.eijk@student.tue.nl
https://gitlab.tue.nl/dtlab/unity-client-dtlab-api
https://docs.unity3d.com/ScriptReference/Search.SearchUtils.TryParse.html

To configure the connection, the following parameters must be configured:

Variable Type Description Optional/ Required

Server adress String Hostname or IP adress of
MQTT Broker. Required

Port String Port number of MQTT on
broker. Required

Use Credentials Boolean

Some MQTT brokers require
user credentials for
connections. If this is the
case for the broker you
want to connect to, tick this
box.

Optional (Check broker)

Use Encryption Boolean

Some MQTT brokers require
an encrypted connection. If
this is the case for the
broker you want to connect
to, tick this box.

Optional (Check broker)

Username String Username of account set at
MQTT broker.

Optional (see Use
Credentials)

Password String Password of account set at
MQTT broker.

Optional (see Use
Credentials)

Topics List<String>

List of topics to subscribe
to. All subscription topics
used in the Unity project
should be declared here.

Optional (Required for
subscription functionality)

Variable Type Description Optional/ Required

Connect to MQTT broker at
runtime Boolean

Disables editor time
connection and enables
connection upon entering
runtime. Only enable this
setting after testing the
connection in editor time.

Optional

Upon opening the editor window initially, the Server Address and Port variables are pre-
configured. This allows quick testing of a connection to test.mosquitto.org . To verify, click the gray
connect button at the bottom of the MQTT editor window. A debugging message should appear in
the console stating Connected to: test.mosquitto.org:1883 , indicating successful functionality.

1. Setup MQTT broker. If you already have an account and password provided by the
Digital Twin Lab or if you already setup your own broker, go to step 2. For certain projects
it is possible to make use of the MQTT broker of the Digital Twin Lab. If you want to make
use of the MQTT broker of the Digital Twin Lab, but dont have credentials yet, please
contact us via e-mail.

2. Open the MQTT Editor Window via Tools -> EAISI Digital Twin Lab -> MQTT editor in the
Unity Editor. A new window will open alongside the Inspector window.

3. To test the library, click the Connect button on the bottom of the MQTT editor window
without altering any parameters. This solely tests if the interface can connect to an MQTT
broker; no messages are relayed. A message stating Connected to:
test.mosquitto.org:1883 should pop up in the Console window within Unity. Clicking
Disconnect disconnects the Unity client from the MQTT broker, indicated but the message
Disconnected from: test.mosquitto.org:1883 .

4. Establish the connection to the desired MQTT broker. Ensure to complete step 1 of
this workflow.

5. Fill in the parameters in the MQTT editor window as described in MQTT broker connections
based on your MQTT broker settings. Click Connect , if no connection is established, an
error message will pop up in the Console. I.e. SocketException: Could not resolve host
'test.mosquittofalse.org' , indicating the wrong server adress. Any error concerning a
MqttCommunicationTimedOutException indicates a wrong port. If a connections is established,
click Disconnect .

6. If applicable, test receiving messages from the MQTT broker by adding subscription topics
in the Topics list. Click the + button and enter the full path to the variable intended for
reception in Unity. After clicking Connect , the topic and value should display in the
Received header at the bottom of the MQTT editor. Click Disconnect .

7. If applicable, test sending messages to the MQTT broker from Unity. After clicking Connect
, a Publish header should appear below the Disconnec t button. Enter the topic's path in

Workflow

https://test.mosquitto.org/
mailto:digitaltwin.eaisi@tue.nl
mailto:digitaltwin.eaisi@tue.nl

the Topic field and the message to publish in the Message field. To verify message
reception, check the MQTT broker or any MQTT client subscribed to the publishing topic.
Click Disconnect .

8. To receive messages at runtime, populate all topics intended for subscription dor the
Unity project in the Topics section and check the Connect to MQTT broker upon entering
runtime box . Once checked, no changes can be made to the MQTT editor window. Unity
will automatically connect to the MQTT broker and subscribe to the specified topics. To
access received messages at runtime, utilize something like the DataManager script
attached to the Data Objec t prefab found under the folder .../DT lab/MQTT . This script
subscribes to all topics listed in the subscription topic list of the editor window via the
MessageManager . It stores these values in a public string each time the value changes and
uses the Update() functionality to display them in the Inspector window. In summary, to
receive data from a topic at runtime, your MonoBehaviour script should call:

Where topic is the subscription topic, and HandleFunction is the function that gets called
when the value on the topic gets updated. An example of this is shown below.

This function stores the received message of the topic in the dictionary SubscribedTopics ,
though self-defined function can be used as well.

 MessageManager.Instance.SubscribeToTopic(topic, HandleFunction);

 private void HandleFunction(string topic, string message)

 {

 SubscribedTopics[topic] = message;

 }

9. Publishing in run time can be achieved by calling the function below.

TopicToPublish is a string of the full path of the topic you want to pulbisch to. message is
the message to publish. Make sure this message is converted to either a string or JSON
format.

 MQTT_lib.PublishToTopic(TopicToPublish, message.ToString());

10. Steps 6 to 9 can be iterated as needed to attain the desired data interface between Unity
and the MQTT broker.

Development

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

1. Code needs to be reviewed.
2. Build needs to be checked.

