
Updated Unity - MQTT interface

MQTT - Unity interface

Unity - MQTT
interface

LINK TO GITLAB REPOSITORY

[!WARNING] This documentation is set to be partialy merged with the API documentation for Unity.

[!WARNING] This package does not allow for certificate validation.

Project owner: Yann van Eijk
Unity version 2021.3.27f1

This repository contains the scripts needed within Unity to create an interface between MQTT and
Unity. Its main functionality is to receive and sent real-time messages from topics on the MQTT
Broker. These messages are processed within Unity as strings , for other types use TryParse .

The MQTT package is part of the 'DT lab Unity interface package'. For a full installation guide,
please refer to...

Establishing a connection to the MQTT broker is facilitated through the MQTT editor window,
accessible via Tools -> EAISI Digital Twin Lab -> MQTT editor . Upon opening, a new window will
appear next to the Inspector window.

MQTT - Unity interface

Project description

Installation

MQTT broker connections

https://gitlab.tue.nl/dtlab/unity-client-dtlab-api
https://docs.dtlab.eaisi.tue.nl/books/software-documentation/page/server-integration-basics
mailto:j.h.m.v.eijk@student.tue.nl
https://gitlab.tue.nl/dtlab/unity-client-dtlab-api
https://docs.unity3d.com/ScriptReference/Search.SearchUtils.TryParse.html

To configure the connection, the following parameters must be configured:

Variable Type Description Optional/ Required

Server adress String Hostname or IP adress of
MQTT Broker. Required

Port String Port number of MQTT on
broker. Required

Use Credentials Boolean

Some MQTT brokers require
user credentials for
connections. If this is the
case for the broker you
want to connect to, tick this
box.

Optional (Check broker)

Use Encryption Boolean

Some MQTT brokers require
an encrypted connection. If
this is the case for the
broker you want to connect
to, tick this box.

Optional (Check broker)

Username String Username of account set at
MQTT broker.

Optional (see Use
Credentials)

Password String Password of account set at
MQTT broker.

Optional (see Use
Credentials)

Topics List<String>

List of topics to subscribe
to. All subscription topics
used in the Unity project
should be declared here.

Optional (Required for
subscription functionality)

Variable Type Description Optional/ Required

Connect to MQTT broker at
runtime Boolean

Disables editor time
connection and enables
connection upon entering
runtime. Only enable this
setting after testing the
connection in editor time.

Optional

Upon opening the editor window initially, the Server Address and Port variables are pre-
configured. This allows quick testing of a connection to test.mosquitto.org . To verify, click the gray
connect button at the bottom of the MQTT editor window. A debugging message should appear in
the console stating Connected to: test.mosquitto.org:1883 , indicating successful functionality.

1. Setup MQTT broker. If you already have an account and password provided by the
Digital Twin Lab or if you already setup your own broker, go to step 2. For certain projects
it is possible to make use of the MQTT broker of the Digital Twin Lab. If you want to make
use of the MQTT broker of the Digital Twin Lab, but dont have credentials yet, please
contact us via e-mail.

2. Open the MQTT Editor Window via Tools -> EAISI Digital Twin Lab -> MQTT editor in the
Unity Editor. A new window will open alongside the Inspector window.

3. To test the library, click the Connect button on the bottom of the MQTT editor window
without altering any parameters. This solely tests if the interface can connect to an MQTT
broker; no messages are relayed. A message stating Connected to:
test.mosquitto.org:1883 should pop up in the Console window within Unity. Clicking
Disconnect disconnects the Unity client from the MQTT broker, indicated but the message
Disconnected from: test.mosquitto.org:1883 .

4. Establish the connection to the desired MQTT broker. Ensure to complete step 1 of
this workflow.

5. Fill in the parameters in the MQTT editor window as described in MQTT broker connections
based on your MQTT broker settings. Click Connect , if no connection is established, an
error message will pop up in the Console. I.e. SocketException: Could not resolve host
'test.mosquittofalse.org' , indicating the wrong server adress. Any error concerning a
MqttCommunicationTimedOutException indicates a wrong port. If a connections is established,
click Disconnect .

6. If applicable, test receiving messages from the MQTT broker by adding subscription topics
in the Topics list. Click the + button and enter the full path to the variable intended for
reception in Unity. After clicking Connect , the topic and value should display in the
Received header at the bottom of the MQTT editor. Click Disconnect .

7. If applicable, test sending messages to the MQTT broker from Unity. After clicking Connect
, a Publish header should appear below the Disconnec t button. Enter the topic's path in

Workflow

https://test.mosquitto.org/
mailto:digitaltwin.eaisi@tue.nl
mailto:digitaltwin.eaisi@tue.nl

the Topic field and the message to publish in the Message field. To verify message
reception, check the MQTT broker or any MQTT client subscribed to the publishing topic.
Click Disconnect .

8. To receive messages at runtime, populate all topics intended for subscription dor the
Unity project in the Topics section and check the Connect to MQTT broker upon entering
runtime box . Once checked, no changes can be made to the MQTT editor window. Unity
will automatically connect to the MQTT broker and subscribe to the specified topics. To
access received messages at runtime, utilize something like the DataManager script
attached to the Data Objec t prefab found under the folder .../DT lab/MQTT . This script
subscribes to all topics listed in the subscription topic list of the editor window via the
MessageManager . It stores these values in a public string each time the value changes and
uses the Update() functionality to display them in the Inspector window. In summary, to
receive data from a topic at runtime, your MonoBehaviour script should call:

Where topic is the subscription topic, and HandleFunction is the function that gets called
when the value on the topic gets updated. An example of this is shown below.

This function stores the received message of the topic in the dictionary SubscribedTopics ,
though self-defined function can be used as well.

 MessageManager.Instance.SubscribeToTopic(topic, HandleFunction);

 private void HandleFunction(string topic, string message)

 {

 SubscribedTopics[topic] = message;

 }

9. Publishing in run time can be achieved by calling the function below.

TopicToPublish is a string of the full path of the topic you want to pulbisch to. message is
the message to publish. Make sure this message is converted to either a string or JSON
format.

 MQTT_lib.PublishToTopic(TopicToPublish, message.ToString());

10. Steps 6 to 9 can be iterated as needed to attain the desired data interface between Unity
and the MQTT broker.

Development

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

1. Code needs to be reviewed.
2. Build needs to be checked.

