
Tutorial for setting up Unity for VR using the XR Interaction Toolkit.

Getting started with Unity and VR
Setting the scene
Basic Teleportation
Customizing controls
UI events
Finishing touches

Unity - basic setup

Before you get started, make sure that your VR headset and controllers are properly connected to
your workstation. For additional tips on how to get started with the HTC Vive headset, consult the
[hardware guide].

In the SteamVR settings, make sure that the Current OpenXR Runtime is set to SteamVR instead
of Oculus, especially if a VR headset other than the HTC Vive was used on your current computer.

Create a new Unity project using the latest official version. It is beneficial at this stage to check for
an updated version, but the rest of this guide will assume you're working with version 2021.3.19f1 .
Select the Universal Render Pipeline as the project type. This format provides the highest
graphics fidelity.

Create a new empty scene in your project. Go to Window>Package Manager, choose
Packages:Unity Registry from the drop-down menu, then search for XR Interaction Toolkit and
install the package. The version used in this guide is 2.2.0 . From the samples in the XR Interaction
Toolkit, import the Starter Assets. Install the XR Plugin Manager as well.

Getting started with Unity
and VR

Navigate to Edit>Project Settings>Preset Manager. In the Project file explorer, navigate to Assets >
Samples > XR Interaction Toolkit > 2.2.0 > Starter Assets, open a preset in the inspector, then
click Add to ScriptName Default. You should see the preset appear in the preset manager. Repeat
this step for all the other presets available in the Starter Assets folder. Make sure that you label the
presets for the Left and Right controllers using the filter. If everything is set up correctly, this is
what you should see in the Preset Manager:

Navigate to XR Plug-in Management from the Project Settings. Under Plug-in Providers, check the
Open XR box, and wait for the scripts to reload. An Open XR tab should appear under Plug-in
Management, where you should add the HTC Vive controller profile to the list of interaction profiles.
In the OpenXR tab, also make sure that the Play Mode OpenXR Runtime is set to SteamVR.

You' re now ready to start building your VR scene in Unity!

https://docs.dtlab.eaisi.tue.nl/uploads/images/gallery/2023-03/preset-manager-settings.png

Now that all the project settings have been updated to work with our VR setup, it's time to build our
VR scene. First, create a plane game object at coordinates 0,0,0 to serve as the floor. Then, create
an XR Origin (VR) object. This object contains a camera offset, which defines the height of the
camera corresponding to the headset in space, the main camera object, and the two controllers. If
you run the game now, you' ll notice that your head movements are tracked, but you cannot see
the controllers. That's because we haven' t assigned them an asset yet!

To fix that, you can import the vr_controller_vive_1_5 asset from the VR Starter Template, simply
by dragging and dropping the asset from the asset folder to the controller objects. Rotate the
assets (not the parent controllers!) by 180 degrees around the Y-axis to make sure that they' re
matching their real-world orientation. To make the controllers appear more realistic, we can create
a new material and set the Base Map to black or dark gray. Then, we drag this new material onto
the lowest-level controller objects, which should be called whole_model_group1.

For each controller, you will also need to add the input handling preset. To do so, click on the slider
icon in the top-right corner of the XR Controller (Action-based) dropdown, and select the XRI
Default Left/Right Controller preset, depending on which controller you've selected.

Each controller should have an XR ray interactor, which allows us to use the controller buttons to
interact with game objects and UI components. To test this, add a Sphere or Cube game object to
the scene, and assign it a Rigidbody and an XR Grab Interactable component. When running the
game, you should be able to grab the object by using the controller's trigger.

Setting the scene

Teleportation allows you to instantly move from a location to another in your VR environment. To
get a teleportation system up and running, you first need to add a Locomotion System and a
Teleportation Provider to your XR Origin object. Make sure that the XR Origin is assigned to the
Locomotion System, and that the Locomotion System is assigned to the Teleportation Provider

From the Unity main menu, click GameObject > XR > Teleportation Area or GameObject > XR >
Teleportation Anchor to create a plane on which teleportation is possible. On a Teleportation Area,
you teleport to your pointed target on the plane's child collider, whereas a Teleportation Anchor
specifies a pre-determined position and/or rotation in addition to the Teleportation Area. You can
also add a Teleportation Area component to the Plane object we've previously set up as our floor.

You should now have a basic scene with the ability to teleport using your controllers. By default,
teleportation is activated by the grip buttons on the HTC Vive controllers. The default ray
interactors will turn from red to white if you're pointing at an area where you can teleport.

Basic Teleportation

In order to make your game or simulation more intuitive or accessible, you can modify the
controller bindings inside your Unity project. Here, we will show how to change the teleportation
controls from the default grip buttons to the trigger.

From the Assets folder, click on Samples > Interaction Toolkit > 2.2.0 > Starter Assets, then
open the XRI Default Input Actions Import Settings. Select the XRI LeftHand Interaction menu, in
the drop-down properties of Select you should see gripPressed [LeftHand XR Controller]. Change
that path to triggerPressed [LeftHand XR Controller]. Repeat this step for Select Value, changing
the path from grip [LeftHand XR Controller] to trigger [LeftHand XR Controller].
To avoid having two actions mapped to the same button input, you can also change Activate to
gripPressed, and Activate Value to grip.

Go back to your LeftHand Controller in your scene, and under the XR Ray Interactor properties,
check the box "allow Hovered activate". This way, you won't have to grip the controller to activate
objects you're pointing at.

For the right controller, you can keep the default input actions. To make the right controller only
interact with UI elements, the XR Ray Interactor can be modified. Change the Raycast Mask from
Everything/Default to UI, and the right ray will only be able to interact with UI elements. This can
be useful if you want to avoid accidental teleportation when pressing a UI button, for example.

Customizing controls

To interact with Unity's built-in UI elements, you need to perform extra steps, particularly if you're
dealing with 3D-tracked devices. The XR Interaction Toolkit package provides a number of new
components that you can use to convert an XR controller to work seamlessly with the UI, as well as
helper menu options that handle basic configuration settings.

Before adding a button, a slider, or any other UI element, click on GameObject > UI > Canvas to
generate a Canvas which will contain all UI elements, as well as an EventSystem component. In the
Canvas properties, change the Render Mode to World Space, and set the Event Camera to the
Main Camera. Then, use the Scale property to make the Canvas fit your scene.

The Event System component acts as a central dispatch for UI events to process input, and update
individual active canvases. Additionally, each Event System needs an Input Module to process
input. The EventSystem component might have a Standalone Input Module or an Input System UI
Module, which will prevent proper input processing. Remove the component, and add an XR UI
Input Module to the event system.

Finally, add a Tracked Device Graphic Raycaster component to the Canvas, and set the Raycast
Trigger Interaction to "Collide". This will allow your Raycast to actually hit elements on the Canvas
instead of passing through them.

To test your setup, add a Button object as a child of the Canvas. If you select the button by
pressing the trigger on your Right controller, the button should change color. Now, you can add
your own script to the Button object, and change the On Click () property to run that script when
the button is pressed.

UI events

Important: If you directly modify the Width and Height of your Canvas instead
of scaling it, the Canvas might not work as intended. This also applies to Buttons
and other UI elements.

Now that all the basic elements are in place, you can add some features to the scene to make it
more user-friendly.

First of all, change the color of the left and right controller object to easily tell them apart. To do
this, click on the whole_model_group1 object, then on Material > Surface Inputs. Change the Base
Map to a different color for each controller. In the Demo Project, you can see that the left controller
is blue, and the right controller is red.

Now you can improve the looks of teleportation and raycasting. In the XR Ray Interactor properties,
under Raycast Configuration, change the Line Type to Projectile Curve. You can also change the ray
color: in the template, the Invalid Color Gradient is set to transparent. This makes the ray invisible,
until it is pointed at a valid target.

A teleportation reticle can also be added to the ray. To prototype this, create a new cylinder,
rename it Teleport Reticle, remove the collider, scale it down to 0.5 and lower the Y axis to create a
disk shape. Create a new material called Reticle Base, set the shader to URP/unlit, set the surface
type to transparent, choose a color, and decrease the alpha value to about 70. Drag the new
material onto the Teleport Reticle object and assign the Reticle to the Reticle property of the Line
Visual component. You can see a transparent reticle at the end of our ray which appears when
hovering over an eligible object and provides some additional feedback to the player on their
teleport location.

To make this element more interesting, you can use a ShaderGraph instead of a solid color. Right
click in the Project folder and select Create > Shader Graph > URP > Unlit Shader Graph, then
open the new shader in the shader editor. In the Graph Inspector, change the Surface Type to
Transparent and the Render Face to Both. Now let's create two colors in the left-hand panel for the
shader effect. Switch the Graph Inspector to the Node Settings window to view the properties for
each color. Make the TopColor fully transparent, and the BottomColor your preferred shade. To
create a gradient based on the height of the model, right click in the open space and select Create
Node then search for Position. Update the Space value to Object. Create another node for Split.
Connect the nodes by dragging the node marker from the output of Space to the input of Split.
Create a Lerp node, then connect BottomColor to A, TopColor to B, and the output of Split to T.
Next drag the Lerp Output to the “Base Color” Fragment. Create a new Split node and drag in the
Lerp output, then drag the alpha channel from the split to the alpha on the Fragment. This will
allow you to separately control the alpha values. The Shader setup is now complete. Click on Save
Asset and return to the Scene. Right click on the Shader and select Create -> Material. This will
create a new material with the shader already applied to it. Next apply the material to our
teleportation reticle cylinder. Once applied, choose some colors and play around with the alpha
channel.

Finishing touches

